

KSK Mahanadi Power Company Limited

CIN No.: U40300TG2009PLC06462

Works
Near Naiyara Village,
Akaltara Tehsil,
Janjgir - Champa District,
Chhattisgarh
Tel (Site): 07817-284001

Registered Office 8-2-293/82/A/431A Road No.22, Jubilee Hills Hyderabad - 500033 Tel: +91-40-23559922-25

Tel: +91-40-23558701 Fax: +91-40-23559930

Date: 09.09.2019

Ref. No: CECB, BILAS/PDKN/2500108/1117

To
The Regional Officer,
Chhattisgarh Environment Conservation Board,
Vyapar Vihar, Near Pt. Deendayal Upadhyaya Park,
Bilaspur, Chhattisgarh.

Sub: - Submission of Environmental Statement in Form-V for last Financial Year 2018-19-Reg.

Ref: -i) Consent for Operation No. - 763/TS/CECB/2015 Dt. 22.05.2015

- ii) Renewal Consent for Operation No.1602/TS/CECB/2018 (Air) and 1600/TS/CECB/2018 (Water) Dtd.14.05.2018 Dtd. 14.05.2018
- iii) Environmental Clearance No. (Amendment & Extended of Validity)-13012/44/2008-IA.II (T) Dt.19.04.2018 & J-13012/44/2008-IA.II (T), Dt.19.10.2009
- iv) Rule-14 of Environmental (Protection) Rule, 1986

Sir,

In inviting references to the above on the mentioned subject, please find herewith the enclosed **Environmental Statement in Form-V**′ for last Financial Year **2018-19** with duly filled-up under Rule-14 of the Environmental (Protection) Rules, 1986 for operational Units-3, 4 & 2 (3 x 600MW) of M/s KSK Mahanadi Power Company Limited.

Submitted for your kind Perusal and records please.

Thanking You, Yours faithfully,

For KSK Mahanadi Power company Limited

(Authorized Signatory)

Copy to: i) The Regional Officer, CECB, Bilaspur, Chhattisgarh.

ii) The Addl. PCCF(C), MoEF &CC, Regional Office (WCZ), Nagpur, Maharashtra

Encl: Environmental Statement in Form-V- FY 2018-19.

ENVIRONMENTAL STATEMENT REPORT

OF

KSK Mahanadi Power Company Limited, Village- Nariyara, Tehsil- Akaltara District- Janjgir-Champa Chhattisgarh.

Unit#1, 2 & 3 (3x600MW)

For The Financial Year Ending 31st March 2019

Submitted to

Chhattisgarh Environment Conservation Board, Chhattisgarh

FORM - V

(See Rule 14)

Environmental Statement Report for the financial year ending the 31st March, 2019.

PART-A

(i) Name and address of the : Mr. S. Kishore, Director

Owner/Occupier of the Industry, M/s KSK Mahanadi Power Company Limited

Operation or process. Village- Nariyara, Tehsil-Akaltara,

District- Janjgir-Champa, Chhattisgarh

(ii) Industry Category : Red A Category

(iii) Production capacity : 3x600 MW

(iv) Year of Establishment : 16th Feb 2010

Commercial Operation Date 14th Aug 2013 (for **Unit No. #3**)

26th Aug 2014 (for **Unit No. #4**)

28th Feb 2018 (for **Unit No. #2**)

(v) Date of the last environmental : 1st September, 2018

Audit Report submitted

PART-B

Water and Raw Material Consumption

i) Water Consumption:

Raw Water	During the previous financial year 2017-18	During the Financial Year 2018-19
For production of DM plant water (m3)	0	0
For cooling water & miscellaneous (m3)	1,24,81,471	14970453
Potable water (m3)	2,30,579	258123
Total	1,27,12,050	15228576

Name of the product:	Water consumption	per unit of product	
Cara Cara	During the previous FY 2017-18	During the FY 2018-19	
Specific water consumption (KL/MWH)	2.17	1.93	
consumption (KL/MWH)		Details enclosed as Annexure-I	
	Electricity generation		
Gross electricity generated (MU)	During the previous	During the Financial	
	Financial Year 2017-18	Year 2018-19	
	5645	7872	
		Details enclosed as Annexure-II	

ii) Raw Material consumption:

SL.	Name of raw	Name of	Consumption of raw material per unit output (kg/Kwh)	
No	materials.	products	During the previous FY 2017-18	During the FY 2018-19
1	Coal		0.63	0.64
2	LDO/ HFO (Only during start up)	Electricity	0.8	0.51

PART-C

Pollution Generated (Parameters as specified in the Consent issued)

Pollution discharged to Environment/ unit of output

(i) Pollutant	Quantity of	Percentage of
	Pollution	variation from
	Generated	Prescribed Standards

a) Waste Water

Condenser Cooling Water

Parameters	Limit	Range of conc.	% age of variation
рН	6.5- 8.5	7.6	within limits
Temp	<5 Deg C	28.1	within limits
FA Chlorine	0.5 mg/L	<0.2	within limits

Boiler Blow Down

Parameters	Limit	Range of conc.	% age of variation
Suspended solid	100mg/L	31.5	within limits
Oil & Grease	20 mg/L	<1.0	within limits
Copper	1 mg/L	<0.01	within limits
Iron	1 mg/L	0.21	within limits

Cooling Tower Blow Down

Parameters	Limit	Range of conc.	% age of variation
FA Chlorine	0.5 mg/L	<0.2	within limits
Zinc	1.0 mg/L	0.42	within limits
Chromium (T)	0.2 mg/L	<0.01	within limits
Phosphate	5.0 mg/L	0.71	within limits

b) Air

Stack emission characteristics Unit#3				
		Quantity	Average concentration	% Variation
Parameters	Limit	Kg/hour	(mg/Nm3)	
Particulate Matter (PM)	50mg/Nm3	187	37.9	-24.2 %
Stack emission	Stack emission characteristics Unit#4			% Variation
Uni			Average concentration (mg/Nm3)	
Parameters	Limit			
Particulate Matter (PM)	50mg/Nm3	171	34.9	-30.2 %
Unit-2		Quantity	Average concentration	0/ Variation
Parameters	Limit	Kg/hour	(mg/Nm3)	% Variation
Particulate Matter (PM)	30mg/Nm3	84	20.4	-32 %

PART-D

Hazardous Wastes

(As specified under Hazardous Wastes (Management, Handling and Transboundary Movement Rules, 2008)

Hazardous Wastes	Total Quantity During the previous financial year (2017-18)	During the financial year (2018-19)
From Process	18 MT Used Oil	15.8 MT Used Oil
From Pollution Control Facility	Nil	Nil

PART-E Solid Wastes

		Total Quantity	
Sl. No.		During the previous Financial year (2017-18)MT	During the current Financial year (2018-19)(MT)
a)	From process Fly (Ash)	11,72,338	1604056
b)	From Pollution Control facility	Nil	Nil
c)	(1) Quantity recycled or reutilized within the Unit.		
	(2) Sold		
	(3) Disposed	10,36,719	1375413

PART-F

Please specify the characteristics in terms of composition and quantum of Hazardous waste as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

Hazardous waste:

The generated used/spent oil is hydrocarbon in nature. **15.8 MT** of Used/spent oil (under category No.-5.1) is disposed to authorized recycler of Hazardous Waste during this **FY 2018-19**.

Fly Ash and Bottom Ash:

At present, only Fly Ash & Bottom Ash as Solid Waste is being generated from current power plant operation activities. Fly ash is being collected & Stored at 3900m3 capacity Silo, thereafter pneumatically.

It is being transferred to Bulkers through the air tight telescopic chute use in Cement & Brick Manufacturing industry. Bottom Ash disposed to Ash Pond/dyke. 100% of the Ash Generated from plant operation is being utilized by dispatching to Cement Industry, Brick Manufactures & for Road Construction work. (Ash Dyke storage optimization) Details are enclosed as **Annexure-III.**

Data of Industrial Effluent Annexure- IV

Monthly Source Emissions Unit # 3 Annexure- V

Monthly Source Emissions Unit # 4 Annexure- V (A)

Monthly Source Emissions Unit # 2 Annexure- V (B)

SUMMARY OF AMBIENT AIR QUALITY RESULTS (Inside Plant)

Annexure- VI

SUMMARY OF AMBIENT AIR QUALITY RESULTS (Outside Plant)

Annexure- VI (A)

PART-G

Impact of the pollution abatement measures taken on conservation of natural resources and on the cost of production:

- 1. Low Sulphur Coal is used for power generation: Enabling to lower the SO2 Emission.
- 2. For Coal transportation through Train- Merry go round track is being used. (i.e. minimize line source emission & Fuel Conservation).
- 3. For Coal transportation through Roads: Tarpaulin covered trucks/dumpers has been followed-up to minimize Secondary /Tertiary fugitive dust emission.
- 4. Optimal Usage of Combustion support or Auxiliary fuels i.e LDO/HFO (lower per MW Liquid fuel cost)
- 5. Optimization of Coal Inventory level.
- 6. Reuse & recycle of waste water (Boiler, CT Blow down & DM Plant for ash handling purpose (Reducing demand for fresh raw water).
- 7. 100% of the Fly Ash Generation from plant operation is being utilized by dispatching to Cement Industry, Brick Manufactures & for Road Construction work (Ash Dyke storage optimization)
- 8. Use of Low NOx Burner in furnace (Energy Conservation)
- 9. All the major Drives are VFD (Energy Conservation)
- 10. Dust extraction systems are provided & operation to minimize coal dust losses through fugitive dust emission.
- 11. Extensive tree planation has been carried out. As on date, total **7,20,000nos.** of saplings have been planted within the Plant premises in an areas about **277** hectares i.e **33.3%** of total project area (**828.46** Hectares). Out of which **3,99,910nos**. of saplings has been survived and further plantation by causality replacement is under progress.

PART-H

Additional measures investment proposal for environmental protection including abetment of pollution prevention of pollution.

Environmental Cost details towards pollution control and monitoring for the year 2018-19 are as follows:

Environmental Expenses in last FY2018-19

Section	Capital expenditure (In Crores)	Recurring expenditure (In Crores)	Total	
Air quality Management				
Electrical, mechanical spares		17.54	17.54	
Manpower cost		0.50	0.50	
Energy consumption cost (ESP+FF)		14.14	14.14	
Water quality and waste water quality Management				
Chemicals		0.33	0.33	
Manpower cost		0.12	0.12	
Solid waste Management				
Ash Transportation cost		42.80	42.80	

Hazardous waste Management			
Hazardous Waste Storage Shed	0.30		0.30
House Keeping			
Manpower, Tools /Tackles &		1.79	1.79
Vehicles resources cost.		1.79	1.79
Greenbelt Development			
Equipment		0.02	0.02
Manpower cost		1.00	1.00
Environmental Monitoring		0.32	0.32
Online CAAQMS, Remote calibration, purchase of PH analyzer, Gas for calibration & Env. display board etc.	2.5	0.16	2.66
EMD Manpower cost		0.50	0.50
Total	2.8	79.22	82.02

PART-I Miscellaneous

Any other particulars for improving environment protection and abatement of pollution.

- 1. High efficiency ESP + Hybrid Fabric Filter combination, with 99.7% efficiency has been installed for each Unit (600MW).
- 2. Zero water discharge system has been implemented. Effluents are being used in Ash Handling, Dust Suppression, DM water Production & Green belt development purposes.
- 3. Development of Greenbelt, ranging 50 to 100m width, by using Local Climate suitable Fast growing plant species.
- 4. Pulse Jet type bag –filters have been installed at all the Transfer-points meant for Coal transport from CHP area to boiler area.-
- 5. Water sprinkling arrangement facilitate at all the dust prone areas including Coal yard area.
- 6. 44 No's Rain Gun type of Water spray system has been installed at Coal yard area.
- 7. Installation of bag filters & Dry Fog System over the Coal conveyor Transfer Towers.
- 8. All the major internal roads are concretized and adequate capacity of water tankers has been deployed for water spraying to control fugitive dust emission.
- 9. Regular sweeping of roads are also in practiced.
- 10. Necklace drains provided in and around the Coal yard and other area to prevent leachate water.

ANNEXURE – I

		WATER CO	NSUMPTION I	DETAILS IN FY2018-19		
I	Consumption of R	Raw Water	(KL)	Reuse/Recycling o	of Waste Wat	er (KL)
Month	Cooling Tower Operation	Boiler Water	Portable	ETP Clarifier plus RO+UF Circuit for DM WATER Production	Ash Handling	STP
Apr-18	1386815	0	19251	61728	131602	12010
May-18	1561602	0	22496	93720	224472	14390
Jun-18	959777	0	18672	31589	222382	12400
Jul-18	1207919	0	18120	51466	191765	12389
Aug-18	1447275	0	16324	94768	306638	12430
Sep-18	1180316	0	17066	33663	219286	11540
Oct-18	1485709	0	22188	67639	180562	13490
Nov-18	1456415	0	35945	50127	146530	25210
Dec-18	1210809	0	28571	61743	109032	19550
Jan-19	897784	0	23973	39416	59717	16190
Feb-19	875802	0	18226	40374	67070	12745
Mar-19	1300230	0	17291	52271	184885	14880
Total	14970453		258123	678504	2043941	177224

ANNEXURE – II

POWER GENERATION AND COAL CONSUMPTION DETAILS FOR FY 2018-19

Month	Month wis	e Gross Power Details (MU)	Generation	Month wise	Coal Consump	tion Detail's
	Unit # 3	Unit # 4	Unit # 2	Unit # 3	Unit # 4	Unit # 2
Apr-18	127	365	178	77713	221867	102670
May-18	400	36	378	244269	22873	227429
Jun-18	59.69	393	0	39409	267083	0
Jul-18	0	375	339	0	259766	231622
Aug-18	0	365	391	0	230742	237723
Sep-18	22	236	308	14559	165904	208622
Oct-18	29	436	338	16886	265259	200258
Nov-18	0	370	405	0	239147	251645
Dec-18	0	243	408	0	158078	252322
Jan-19	0	133	373	0	94078	235933
Feb-19	0	354	119	0	230858	73751
Mar-19	0	286	376	0	198858	243776
Total	638	3592	3614	392836	2354513	2265751

ANNEXURE – III

			F	LY ASH GE	NERATION	& UTILISA	TION DET	AILS FOR I	Y 2017-18	3		ANNEXUR
Month	Fly A	Ash Genera (MT)	ation	-	Jtilized-Dis nent Plant	-	_	Utilized fourpose (M		Percent	tage of Utilizat	ion (%)
Units	Unit#3	Unit#4	Unit#2	Unit#3	Unit#4	Unit#2	Unit#3	Unit#4	Unit#2	Unit#3 (6 th Yr. operation)	Unit#4 (5 th Yr. operation)	Unit#2 (2 nd Yr. operation)
Apr-18	26677	64962	35981	26677	63685	17857	0	1277	402	100%	100%	51%
May-18	82486	8128	76035	82486	3845	0	0	1666	0	100%	68%	0%
Jun-18	13845	85552	0	13845	79690	0	0	737	0	100%	94%	0%
Jul-18	0	81359	72544	0	81359	45604	0	0	2975	0%	100%	67%
Aug-18	0	72811	75972	0	72811	49920	0	0	15458	0%	100%	86%
Sep-18	4637	52840	66446	4637	49206	62535	0	3634	0	100%	100%	94%
Oct-18	5378	84485	63782	5378	82200	36317	0	2285	0	100%	100%	57%
Nov-18	0	76168	80149	0	76168	17948	0	0	3185	0%	100%	26%
Dec-18	0	50348	80365	0	50348	75597	0	0	2575	0%	100%	97%
Jan-19	0	29964	75145	0	29964	72402	0	0	2743	0%	100%	100%
Feb-19	0	73528	23490	0	71031	3550	0	2497	19940	0%	100%	100%
Mar-19	0	63336	77643	0	61556	65869	0	1780	11774	0%	100%	100%
Total	133023	743481	727552	133023	721863	447599	0	13876	59052	100%	99%	70%

ANNEXURE-IV

DATA OF INDUSTRIAL EFFLUENT (Guard Pond) from APRIL 2018 - MARCH 2019

Month	рН	TSS (mg/l)	Oil & Grease (mg/l)
Apr-18	7.8	37	<1.0
May-18	7.6	41	<1.0
Jun-18	7.8	48	<1.0
Jul-18	7.6	52	<1.0
Aug-18	7.9	47	<1.0
Sep-18	8	52	<1.0
Oct-18	7.8	46	<1.0
Nov-18	7.9	39	<1.0
Dec-18	7.6	47	<1.0
Jan-19	7.4	52	<1.0
Feb-19	7.8	65	<1.0
Mar-19	7.6	54	<1.0
Avg	7.7	48.3	<1.0

ANNEXURE-V

Monthly Source Emissions (Unit#3) from April-2018 to March-2019

Month	Particulate Matter (mg/Nm³)	SO ₂ (mg/Nm ³)	NOx (mg/Nm³)									
Apr-18	37.5	562	386									
May-18	37.2	603	426									
Jun-18	39.1	693	418									
Jul-18		Shut down										
Aug-18	Shut down											
Sep-18	Shut down											
Oct-18		Shut down										
Nov-18		Shut down										
Dec-18		Shut down										
Jan-19		Shut down										
Feb-19	Shut down											
Mar-19	Shut down											
Avg.	37.9	619.3 410										

ANNEXURE - V(A)

Monthly Source Emissions (Unit#4) from April-2018 to March-2019

Month	Particulate Matter (mg/Nm³)	SO ₂ (mg/Nm ³)	NOx (mg/Nm³)
Apr-18	39.4	571	412
May-18	38.9	586	402
Jun-18	36.3	673	374
Jul-18	38.4	642	423
Aug-18	36.2	583	391
Sep-18	30.5	604	411
Oct-18	34.1	636	441
Nov-18	30.8	547	426
Dec-18	34.4	573.2	447.6
Jan-19	31.8	634.7	502.3
Feb-19	35.2	612	491
Mar-19	33.1	639	503
Avg.	34.9	608.4	435.3

Annexure-V(B)

Monthly Source Emissions (Unit#2) from April-2018 to March-2019

Month	Particulate Matter (mg/Nm³)	SO ₂ (mg/Nm³)	NOx (mg/Nm³)
Apr-18			
May-18			
Jun-18			
Jul-18	23.5	596	392
Aug-18	22.4	473	284
Sep-18	18.3	562	383
Oct-18	17.4	582	401
Nov-18	18.2	538.2	446.9
Dec-18	18.7	602.8	484.7
Jan-19	17.5	592.5	468.9
Feb-19	17.5	576	431
Mar-19	17.9	593	472
Avg.	20.4	568.4	418.2

Annexure-VI

SUMMARY OF AMBIENT AIR QUALITY RESULTS FROM APRIL 2018 TO MARCH 2019

Inside Location:

1. BTG Area-

1	ΡΜ 2.5 (μ	2.5 (μg/m³) PM 10 (μg/m³) Min Avg 98% Max Min Avg 989							SO2 (μ	g/m³)			NOx (µ	ıg/m³)		CO (μg/m³)			
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
39.5	24.4	32.0	34.7	73.9	53.6	63.7	67.3	19.4	12.2	15.4	16.7	23.4	14.5	18.4	20.4	323.0	195.0	257.4	299.0

	Arsenic ($\mu g/m^3$) Nickel ($\mu g/m^3$) Max Min Avg 98% Max Min Avg							Lead (µ	ıg/m³)			Ο3 (μg	g/m³)		$NH_3(\mu g/m^3)$				
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	0.05	<0.001	0.03	0.05	0.007	0.001	0.003	0.005	14.6	6.8	10.2	13.2	<20	<20	<20	<20

	С6Н6 (µ	ıg/m³)		Ben	zo (a) Py	rene ng,	/m3		Hg (με	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.00	<0.00	<0.00	<0.00

2. CHP Area-

	PM 2.5 (µ	ug/m³)			PM 10 (μg/m³)			SO2 (μ	g/m³)			NOx (µ	g/m³)			CO (µg	/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
42.2	27.2	34.4	36.4	78.3	58.9	68.1	70.9	19.5	12.3	16.1	17.5	23.6	16.8	19.8	21.5	360	223	288.1	333.5

	Arsenic ($\mu g/m^3$) Nickel ($\mu g/m^3$)							Lead (µ	ıg/m³)			Ο3 (με	g/m³)		$NH_3(\mu g/m^3)$				
Max	Min	Avg	98%	Max				Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	0.006	0.001	0.003	0.005	0.006	0.001	0.003	0.005	15.2	6.5	10.7	14.2	<20	<20	<20	<20

	С6Н6 (µ	ıg/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (μg	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.00	<0.00	<0.00	<0.00

3. DM Plant -

					PM 10 (ug/m³)			SO2 (μ	g/m³)			NOx (µ	ıg/m³)			CO (µg	/m³)	
Max	Min	Avg	98%	Max					Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
37.5	23.9	30.6	32.2	68.5	51.3	60.2	62.7	18.1	11.1	14.4	15.6	21.1	13.9	17.3	18.5	305	173	240.5	286.3

								Lead (µ	g/m³)			Ο3 (μg	(/m³)			NH₃ (με	g/m³)		
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	0.005	<0.001	0.019	0.037	0.006	0.001	0.003	0.004	14.1	5.3	9.9	13.0	<20	<20	<20	<20

	C	:6Η6 (μ	g/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (μg	g/m³)	
Max	1	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.03	_ <	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.00	<0.00	<0.00	<0.00

4. Ash Silo Area

					PM 10 (μg/m³)			SO2 (μ	g/m³)			NOx (µ	ıg/m³)			CO (µg	/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
42.8	24.6	32.5	34.9	73.1	55.6	64.5	68.0	18.6	12.4	15.3	16.4	21.7	14.6	17.9	19.6	335	200	247	310

	Arsenic (Nickel (Į	ug/m³)			Lead (µ	ıg/m³)			Ο3 (μg	z/m³)			NH₃ (μg	g/m³)		
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	0.004	0.001	0.018	0.036	0.006	0.001	0.003	0.004	14.3	5.8	9.9	13.1	<20	<20	<20	<20

	С6Н6 (µ	ιg/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (με	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.001	<0.001	<0.001	<0.001

ANNETURE - VI (A)

SUMMARY FOR AMBIENT AIR QUALITY MONITORING RESULTS FROM APRIL 2017 TO MARCH 2018

Out Side of Plant Area:

1. Tarod village

Р	PM 2.5 (μ	g/m³)			PM 10 (į	ug/m³)			SO2 (μ	g/m³)			NOx (µ	g/m³)			CO (µg	/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
30.3	18.2	24.2	26.1	61.5	44.5	53.6	56.6	14.9	10.3	12.3	13.4	17.5	12.0	14.7	16.0	291.0	160	217	267

	Arsenic (μg/m³) Nickel (μg/m³) Max Min Avg 98% Max Min Avg 989							Lead (μ	g/m³)			O3 (μg	g/m³)			NH₃ (με	g/m³)		
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001	0.002	0.003	11.1	4.8	9.1	12.1	<20	<20	<20	<20

	С6Н6 (µ	ιg/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (μ	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.001	<0.001	<0.001	<0.001

2. Jhalmala Village

F	PM 2.5 (μg/m³) Max Min Avg 98				PM 10 (ug/m³)			SO2 (μ	g/m³)			NOx (µ	g/m³)			CO (µg	/m³)	
Max	Min	Avg	98%	Max	Max Min Avg 98%				Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
28.1	18.5	23.4	25.1	57.1	43.2	51.0	53.3	17.7	10.1	12.2	13.4	17.1	12.2	14.4	15.7	278.0	160	218	258

	Arsenic (μg/m³) Nickel (μg/m³) Max Min Avg 98% Max Min Avg 98								Lead (μ	ιg/m³)			Ο3 (μg	g/m³)			NH₃ (μg	/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	13.2	4.7	8.8	12.0	<20	<20	<20	<20

	С6Н6 (µ	ıg/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (με	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.001	<0.001	<0.001	<0.001

3. Amora village

PI	VI 2.5 (μg	y/m³)			PM 10 (į	ug/m³)			SO2 (μ	g/m³)			NOx (μ	g/m³)			- J		
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
28.6	18.9	23.5	25.1	60.4	46.3	54.1	56.3	16.1	9.8	12.5	13.7	18.3	12.4	14.8	16.0	290	156	221	268

	Arsenic (μg/m³)			Nickel (μg/m³)			Lead (µ	ıg/m³)			O3 (μg	(/m³)			NH₃ (μg	y/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	13.8	5.1	9.4	12.5	<20	<20	<20	<20

	С6Н6 (με	g/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (με	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.001	<0.001	<0.001	<0.001

4. Sonsari village

Р	M 2.5 (μ _ί	g/m³)			PM 10 (μg/m³)			SO2 (μ	g/m³)			NOx (μ	g/m³)			CO (µg	/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
28.6	19.2	23.6	25.5	62.7	47.1	55.8	58.5	14.5	9.9	12.3	13.4	17.1	12.6	14.6	15.7	283	158	220	262

	Arsenic	(μg/m³)			Nickel (μg/m³)			Lead (µ	ιg/m³)			Ο3 (με	g/m³)			NH₃ (μg	(m^3)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	13.1	4.7	8.9	11.9	<20	<20	<20	<20

	С6Н6 (µ	ιg/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (μ	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.001	<0.001	<0.001	<0.001

5. Nariyara village

Р	PM 2.5 (μ	g/m³)			PM 10 (į	ug/m³)			SO2 (μ	g/m³)			NOx (µ	g/m³)			CO (µg	/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
28.7	18.5	23.6	25.3	58.4	43.5	52.2	54.6	14.2	9.9	11.7	12.9	16.7	12.0	14.1	15.3	282	157	213.8	259

	Arsenic	(μg/m³)			Nickel (μg/m³)			Lead (µ	ιg/m³)			Ο3 (με	g/m³)			NH₃ (μg	/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	13.1	5.0	8.9	12.0	<20	<20	<20	<20

	С6Н6 (µ	ıg/m³)		Ben	zo (a) Py	rene ng	/m3		Hg (με	g/m³)	
Max	Min	Avg	98%	Max	Min	Avg	98%	Max	Min	Avg	98%
<0.01	<0.01	<0.01	<0.01	<1.0	<1.0	<1.0	<1.0	<0.001	<0.001	<0.001	<0.001